
HOOD: Hierarchical Graphs for Generalized Modelling of Clothing Dynamics

Artur Grigorev1,2 Bernhard Thomaszewski1 Michael J. Black2

Otmar Hilliges1

1 ETH Zurich, Department of Computer Science
2 Max Planck Institute for Intelligent Systems, Tubingen

1. Implementation details

1.1. Training details

Garment Initialization. During training, we want to
step garment meshes forward in time from any point in the
pose sequences. To evaluate the loss function at an arbi-
trary starting point, we must provide garment geometry for
the two previous time steps. We approximate these geome-
tries using linear blend skinning combined with the diffused
body model formulation from [9]. We then remove any in-
tersections between skinned garment meshes and the body.
The initial garment meshes computed in this way are gener-
ally not in energetically optimal states. To reduce this inter-
nal energy, we find it useful to scale down the contribution
of the inertia term using a coefficient α ∈ (0, 1]. Using
a smaller coefficient α for the first step during training it-
erations allows the garment to quickly relax into a state of
lower potential energy. At inference time, when initialized
from the resting pose, we always use α = 1. We also pass
α as an input to the network (see Sec. ??) so it can adapt
its prediction to different values. Finally, it should be noted
that skinning is only used for initialization during training,
not at inference time.

Normalization. Following [6], we find it crucial for
convergence to normalize feature vectors at the beginning
of each step using exponentially weighted averages of their
mean and standard deviations. We also perform denormal-
ization on the outputs to obtain accelerations. Since we do
not have access to ground-truth data, we use statistics col-
lected from linearly-skinned garments as described above.

Autoregressive Training. We start by predicting accel-
erations for only one next step, then gradually increase the
number of predicted steps every k iterations up to 5. We
set k to 5000 and find that predicting a maximum of 5 steps
during training is enough for the model to autoregressively
run for thousands of steps at inference time. In the supple-
mentary material, we demonstrate the stability of our model

for very long sequences.

1.2. Garments preprocessing

Hierarchical graph construction We tackle the prob-
lem of limited propagation radius in the message-passing
networks by constructing several levels of coarsened gar-
ment graphs.

To generate coarse edges from the initial garment graph,
we first find a centre node of a graph vc, that is a node,
whose eccentricity is equal to the graph’s radius. Usually,
garment graphs have more than one node with this property,
so we randomly choose one of them. Then, for coarsened
graph, we keep only those nodes, whose distance (i.e., the
number of edges in the shortest path) to the centre is an even
number and replace other nodes with edges between pairs of
the kept nodes. We apply this process recursively to build
several levels of coarse edges. See Algorithm 1 for details.

input : fine graph Gf (Vf , Ef )
output: coarse graph Gc(Vc, Ec)

vcenter ← center of Gf ;
for vi in Vf do

di ← distance(vcenter, vi) ;
Vc ← {vi ∈ Vf | di mod 2 = 0} ;
Ec ← {} ;
V interm ← {vi ∈ Vf | di mod 2 = 1} ;
for vi in V interm do

V from ←
{vj ∈ Vf | eij ∈ Ef & dj = di − 1} ;
V to ← {vj ∈ Vf | eij ∈ Ef & dj = di + 1} ;
for vj in V from do

for vk in V to do
push(ejk, Ec)

Algorithm 1: Building a coarse graph Gc from a given
input graph Gf .

Resting pose geometry As we use resting pose ge-



ometries to compute the physical objective function (see
Sec. 1.4), for some garments, we need to make a prepro-
cessing step to generate these geometries.

Specifically, we find that canonical 3D geometries of the
garments used in [8] are overly smooth and tight. At the
same time [8] uses 2D triangle geometries in the UV space
as canonical for computing the Lstretching term. However.
we computeLstretching using 3D resting pose triangles pro-
jected into 2D.

To better match the garment sizes used in [8] we generate
the resting pose geometries with a preprocessing step. To do
that, we run an LBFGS optimization using the exact same
physical objectives used in [8] with the same 2D triangle
geometries to get a relaxed version of the garments for the
canonical SMPL pose.

For other garments, for example, those generated with
a FoldSketch method [3] or the ones created manually in
Blender, we don’t run this preprocessing step and use their
original 3D geometries as resting geometries.

Skinning weights Our model autoregressively predicts
nodal accelerations for the garment mesh given its geome-
tries from two previous time steps (this gives us nodal po-
sitions and velocities for the previous step). As we want to
initialize the garment geometry from any point in the train-
ing sequences, during training we need a way to approxi-
mate the garment geometries for any given body pose.

To do that we follow [8] and, for each garment node,
borrow skinning weights and blend shapes from the closest
SMPL vertex in the canonical pose.

Although it works fine for tight-fitting garments, we find
that when applied to loose garments (e.g. dresses), this re-
sults in overly stretched triangles. Hence, it is difficult for
the model to start from a garment with severely sub-optimal
potential energy. To overcome this issue, we employ dif-
fused body model formulation from [9] to compute diffused
skinning weights W̃ and pose and shape blend-shapes B̃p,s.

W̃(x) =
1

M

∑
qn∼N(x,d)

W(ϕ(q)) (1)

B̃p,s(x) =
1

M

∑
qn∼N(x,d)

Bp,s(ϕ(q)), (2)

where x is a position of a garment node in resting pose,
d is the distance from this node to the closest SMPL vertex
and ϕ(·) is a function that for the given 3D point returns the
closest SMPL vertex. However, instead of training an MLP,
as in [9], for each garment node in the canonical pose, we
directly sample M 3D points from the normal distribution
N(xi, d). We find M = 10000 enough to get adequate
initialization.

Pinned vertices For some of the garments, we need to
specify a set of ”pinned” vertices, i.e. vertices whose po-
sitions are rigidly connected to the body mesh (e.d. pants

belt). We generate positions of these pinned vertices us-
ing our linear blend-skinning formulation and give them as
input to the network while also giving these vertices a sep-
arate type label. Since there are only a few such vertices
in the garment, using linear blend skinning (or any other
rigid transformation w.r.t. the body mesh) does not affect
the realism of the predicted dynamics.

1.3. Forward pass

Input feature vectors For each time step, we first endow
each node and edge in the input graph with a designated
feature vector that describes the state of this element in the
previous time step along with the local material parameters.
Here we list the contents of the input vectors for the nodes of
the graph, garment edges and body edges. Also, see Fig. 1
for visualization.

The input vectors for the nodes of the graph consist of:

• velocity v⃗ of the not in the previous time step

• normal vector n⃗ of the node

• nodal mass m

• local material parameters: µLame, λLame and kbending

• the weight of the inertial loss α (see Section 3.4 of the
paper)

• one-hot encoding of the node type C (”garment node”,
”pinned garment node” or ”body node”)

• one-hot encoding of the deepest coarse level L the
node is present in (separate code for body nodes)

for body nodes we set m, µLame, λLame and kbending to
−1.

For each garment edge (including fine and coarse ones)
connecting nodes i and j, each input vector is the concate-
nation of:

• a vector describing the relative position of the con-

nected nodes in the current time step ∆⃗x
(ij)

t = (x
(i)
t −

x
(j)
t ) and its’ norm ∥∆⃗x

(ij)

t ∥

• a vector describing the relative position of the con-

nected nodes in resting pose ∆⃗x
(ij)

rest = (x
(i)
rest−x

(j)
rest)

and its’ norm ∥∆⃗x
(ij)

rest∥

• local material parameters: µLame, λLame and kbending
averaged across the connected nodes

• the weight of the inertial loss α (see Section 3.4 of the
paper)

For each body node connecting garment node i and body
node j, the input vector is the concatenation of:



• a vector describing the relative position of the gar-
ment node and the body node in the current time step

∆⃗x
(ij)

t = (x
(i)
t − x

(j)
t ) and its’ norm ∥∆⃗x

(ij)

t ∥

• a vector describing the relative position of the garment
node in the current time step and the body node in the

next time step ∆⃗x
(ij)

t+1 = (x
(i)
t − x

(j)
t+1) and its’ norm

∥∆⃗x
(ij)

t+1∥

• the weight of the inertial loss α (see Section 3.4 of the
paper)

Network architecture Our model consists of 3 parts: the
encoder, N message-passing steps and the decoder. The
encoder converts the input feature vectors into latent vec-
tors with h dimensions. The message-passing steps update
the latent vectors for each node and edge of the graph (see
Fig. 2 for visualization). The decoder decodes the nodal
latent vectors into scalar accelerations. We use the latent
dimensionality h = 128 in our experiments.

Here, we describe the architectures for each of these
parts.

The encoder comprises M + 2 multi-layer perceptrons
(MLPs), where M is the total number of levels in the net-
work. Each of the M MLPs encodes feature vectors of the
garment edges on the specific level. The other two MLPs
encode the nodal feature vectors and the feature vectors for
the body edges.

Each of the message-passing steps consists of L + 2
MLPs. Here L is the number of levels processed by this
specific step. The other two MLPs, again, process the nodal
features and the body edge features.

The decoder is a single MLP that decodes the features
of each garment node into the predicted accelerations.

Each MLP in the architecture has 2 hidden layers with
ReLU activations and layer normalizations.

1.4. Physical supervision

We directly borrow the physical objective terms intro-
duced in SNUG [8] to train our model, with the excep-
tions of the collision term Lcollision and stretching term
Lstretching , which we slightly modify for our needs, and
the novel term Lfriction.

Here we describe these terms in more detail.
Collision term We modify Lcollision to compute the

penetration of each garment node with respect to the closest
face of the body mesh rather than to the closest vertex.

Apart from that, while we compute penetrations happen-
ing in the current time step, we use the body faces that were
closest to the garment vertices in the previous time step. So
the process for the computation of Lcollision in time step t
is as follows:

1. for each garment node vi find the body face fj , whose
center f center

j is closest to vi in the time step t,

2. compute the size of the collision of vertex vi with re-
spect to the face fj in the time step t+ 1

The collision penalty is computed as a cubic energy term
similarly to SNUG:

Lcollision(vi) = max(ϵ− d(vi, fj), 0)
3 (3)

d(vi, fj) = (vi − f center
j ) · n⃗j (4)

where n⃗j is the normal vector of the face fj .
In that way, the body-garment correspondences align

with those used to build world edges. We find this little
modification of the collision term crucial for the conver-
gence of the model. Note, that for the metrics reported in
Table 1 we use the regular collision term, with correspon-
dences for the current time step.

Friction We introduce a novel physical objective
Lfriction, which penalizes the sliding friction between the
garment and the body. The friction energy is computed sep-
arately for every vertex. Following [1, 2], we penalize the
movement of a node relative to the body for those vertices
that fall into the r of the closest body face in both current
and previous time frames.

Here we describe the process of computing the fiction
term for a specific vertex v step-by-step.

First, we find indices u and w of two body faces, closest
to v in the current and the previous time steps (see Figure 3).

u = argmin
p
∥f t

p − vt∥ (5)

w = argmin
p
∥f t+1

p − vt+1∥ (6)

Then we compute the node’s projected position v̂t+1 in
time step t+ 1, assuming it moves the same way as fu

v̂t+1 = vt + (f t+1
u − f t

u), (7)

and find a vector from v̂t+1 to vt+1 and project it onto
a plane with slope θ which is an average between slopes of
f t
m and f t+1

k . Using the norm d of this projected vector, we
compute the friction term with the following formula.

Lfriction = µk × g ×m× cos θ × d (8)

θ = (θtfu + θt+1
fw

)/2 (9)

d = ∥proj(vt+1 − v̂t+1, θ)∥2, (10)

where µk is friction ratio, g is gravitational acceleration,
m is a mass of the node, and proj(·, θ) is an operation of
projecting a vector onto a plane with the slope θi



Figure 1. Visualisation of encoding and decoding steps of the HOOD model. EV , EGE and EBE encode feature vectors of the graph
nodes, garment edges and body edges respectively into the same latent space. After several message-passing steps, the latent vectors
corresponding to garment nodes are decoded into acceleration vectors by DV . To avoid clutter, we only show the encoder for the garment
edges of the highest level. In reality, each level of edges is encoded with a separate encoder, while the set of input features for them is the
same.

Figure 2. Illustration of one message-passing step. First, it updates the latent vectors of the edges of the graph with a dedicated MLP fv→e.
Then, using the updated edge vectors, it updates the node latent vectors with another MLP fe→v . For simplicity, we only show edges of
the highest level here, while in reality, edges of each level are processed by a separate processing MLP f l

v→e, and their aggregations are
concatenated to the input vector of fe→v . Also note, that we use a bidirectional graph where there are always two edges between each pair
of nodes. These two edges (a direct one and an inverse one) have independent latent vectors.

While it is a very rough approximation of the friction
energy, we find that it allows for more realistic modelling
of body-garment interactions. We demonstrate the effects of
the friction term in the supplementary video on our project

page (dolorousrtur.github.io/hood).
Vertex mass and canonical geometries Another slight

difference to the physical objective formulation from SNUG
is how we compute the mass of each garment vertex. As it

https://dolorousrtur.github.io/hood/


Figure 3. We model friction by penalizing the motion of garment
nodes relative to the body.

Figure 4. Inference speed and GPU memory footprint for our fi-
nal model, two baseline architectures (SSCH [7] and SNUG [8]).
Note the logarithmic scale for the speed plot as we also plot the
performance of ARCSIM physical simulator [5]. Each point cor-
responds to one of the training garments. The speed was measured
on NVIDIA GeForce RTX 3060 GPU.

SNUG, to compute the vertex mass, we need to know the
material density and the areas of the adjacent triangle faces.
The difference is that, while SNUG uses original 3D gar-
ment geometries to compute triangle areas, we use the re-
laxed ones, acquired using the preprocessing step described
in Section 1.2.

Apart from that, SNUG uses original 2D triangles from
UV space to compute Lstretching, while we compute
Lstretching using relaxed 3D resting pose triangles pro-
jected into 2D.

2. Experiment details
We trained our final model for 150000 training iterations

which took around 26 hours on NVIDIA Quadro RTX 6000
GPU.

Below we provide some additional information concern-
ing the experiments from the main paper.

2.1. Comparison to state-of-the-art

Since we do not learn from the physically simulated data
as [9] does and use a slightly different objective function
from SNUG [8] (See Sec. 1.4), it is difficult to quantitatively

compare our method to them. However, we can compute
the size and the number of body-garment penetrations by
our method and the baselines. We provide these values in
Table 1

garments Lcollision ↓ % penetrating vertices ↓
SNUG [8] t-shirt, long sleeve top, 1.54e-5 6.83e-1

Ours tank top, pants, shorts 1.21e-7 1.15e-1
SSCH [9] t-shirt, dress 2.73e-5 6.54e-1

Ours 6.61e-7 1.54e-2

Table 1. Our method generates fewer garment-body penetrations
compared to state-of-the-art methods in terms of both average pen-
etration size and percentage of garment vertices penetrating the
body. The numbers were averaged over the whole validation set.

2.2. Architecture analysis

In addition to Table 1 in the main paper, we provide de-
tailed metrics averaged across the whole validation set for
our final model Ours and two baseline architectures Fine15
and Fine48 in Table 2.

Different architectures with different sets of fine and
coarse message-passing steps may result in models with dif-
ferent inference speeds, propagation radii and levels of fine
details. We demonstrate the qualitative differences between
different architectures in the supplementary video on our
project page (dolorousrtur.github.io/hood).

2.3. Stability

Despite the autoregressive inference strategy, we empiri-
cally find that our model shows no signs of instabilities even
for extremely long sequences. As a demonstration, Fig. 5
plots the total loss for a 100-second sequence composed of
several cycles of a periodic animation clip.

References
[1] George E. Brown, Matthew Overby, Zahra Forootaninia, and

Rahul Narain. Accurate dissipative forces in optimization in-
tegrators. ACM Trans. Graph., 37(6), dec 2018. 3

[2] Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer,
Bernhard Thomaszewski, and Stelian Coros. Add: Analyt-
ically differentiable dynamics for multi-body systems with
frictional contact. ACM Trans. Graph., 39(6), nov 2020. 3

[3] Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vin-
ing. Foldsketch: Enriching garments with physically repro-
ducible folds. ACM Transaction on Graphics, 37(4), 2018.
2

[4] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger-
ard Pons-Moll, and Michael J Black. Amass: Archive
of motion capture as surface shapes. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 5442–5451, 2019. 6

[5] Rahul Narain, Armin Samii, and James F O’brien. Adaptive
anisotropic remeshing for cloth simulation. ACM transactions
on graphics (TOG), 31(6):1–10, 2012. 5

https://dolorousrtur.github.io/hood/


Figure 5. Total loss value plotted for a 100-second (3000 frames) sequence. We repeat the same sequence of a jumping person (01 01 from
CMU split of AMASS [4] dataset with a dress from vto dataset [7]) 6 times. The plot for the last part almost precisely matches the first
part, demonstrating the stability of our method. Peaks correspond to rapid body motions.

garments average speed, fps ↑ Lstretching ↓ Lbending ↓ Linertia ↓ Lgravity ↓ Lcollision ↓ Lfriction ↓
Fine15

only dress
6.65 1.68 1.56e-2 4.53e-3 1.22 2.54e-6 2.37e-3

Fine48 2.45 1.66e-1 1.31e-2 3.19e-3 1.24 1.85e-6 2.36e-3
Ours full 7.27 2.08e-1 1.64e-2 3.06e-3 1.25 1.77e-6 2.09e-3
Fine15

all
13.1 7.71e-1 8.06e-3 2.79e-3 8.95e-1 7.25e-7 1.44e-3

Fine48 4.99 1.25e-1 7.41e-3 2.46e-3 8.99e-1 4.52e-7 1.32e-3
Ours full 13.6 1.52e-1 8.46e-3 2.37e-3 9.04e-1 3.28e-7 1.22e-3

Table 2. Comparison of our final model to two ablations in terms of physical objectives and inference speed. We provide the metrics for
the largest garment in the training set (dress, 12K vertices) separately.

[6] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and
Peter W Battaglia. Learning mesh-based simulation with
graph networks. arXiv preprint arXiv:2010.03409, 2020. 1

[7] Igor Santesteban, Miguel A Otaduy, and Dan Casas.
Learning-based animation of clothing for virtual try-on. Com-
puter Graphics Forum, 38(2):355–366, 2019. 5, 6

[8] Igor Santesteban, Miguel A Otaduy, and Dan Casas. SNUG:
Self-supervised neural dynamic garments. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8140–8150, 2022. 2, 3, 5

[9] Igor Santesteban, Nils Thuerey, Miguel A. Otaduy, and Dan
Casas. Self-supervised collision handling via generative
3d garment models for virtual try-on. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11763–11773, June 2021. 1, 2, 5


	. Implementation details
	. Training details
	. Garments preprocessing
	. Forward pass
	. Physical supervision

	. Experiment details
	. Comparison to state-of-the-art
	. Architecture analysis
	. Stability


